Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
J Glob Antimicrob Resist ; 37: 75-80, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38452900

RESUMO

OBJECTIVES: P. aeruginosa is one of the most metabolically versatile bacteria having the ability to survive in multiple environments through its accessory genome. An important hallmark of P. aeruginosa is the high level of antibiotic resistance, which often makes eradication difficult and sometimes impossible. Evolutionary forces have led to this bacterium to develop high antimicrobial resistance with a variety of elements contributing to both intrinsic and acquired resistance. The objectives were to genetically and phenotypically characterizer P. aeruginosa strains isolated from companion animals of different species. METHODS: We characterized a collection of 39 P. aeruginosa strains isolated from infected animals. The genetic characterization was in relation to chromosomal profile by PFGE; content of virulence gene; presence of genomic islands (GIs); genes of the cytotoxins exported by T3SS: exoU, exoS, exoT and exoY; and type IV pili allele. The phenotypic characterization was based on patterns of susceptibility to different antimicrobials. RESULTS: Each strain had a PFGE profile, a high virulence genes content, and a large accessory genome. However, most of the strains presented high sensitivity to almost all antimicrobials tested, showing no acquired resistance (no ß-lactamases). The exception to this lack of resistance was seen with penicillin. CONCLUSIONS: P. aeruginosa could be a naturally sensitive bacterium to standard antimicrobials but could rapidly develop intrinsic and acquired resistance when the bacterium is exposed to pressure exerted by antibiotics, as observed in hospital settings.

2.
Front Microbiol ; 13: 886585, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865920

RESUMO

Background: The advance of the COVID-19 pandemic and spread of SARS-CoV-2 around the world has generated the emergence of new genomic variants. Those variants with possible clinical and therapeutic implications have been classified as variants of concern (VOCs) and variants of interest (VOIs). Objective: This study aims to describe the COVID-19 pandemic and build the evolutionary and demographic dynamics of SARS-CoV-2 populations in Mexico, with emphasis on VOCs. Methods: 30,645 complete genomes of SARS-CoV-2 from Mexico were obtained from GISAID databases up to January 25, 2022. A lineage assignment and phylogenetic analysis was completed, and demographic history for Alpha, Gamma, Delta and Omicron VOCs, and the Mexican variant (B.1.1.519) was performed. Results: 148 variants were detected among the 30,645 genomes analyzed with the Delta variant being the most prevalent in the country, representing 49.7% of all genomes. Conclusion: The COVID-19 pandemic in Mexico was caused by several introductions of SARS-CoV-2, mainly from the United States of America and Europe, followed by local transmission. Regional molecular epidemiological surveillance must implement to detect emergence, introductions and spread of new variants with biologically important mutations.

5.
Vaccine ; 40(12): 1681-1690, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35164990

RESUMO

Currently, no formal mechanisms or systematic approaches exist to inform developers of new vaccines of the evidence anticipated to facilitate global policy recommendations, before a vaccine candidate approaches regulatory approval at the end of pre-licensure efficacy studies. Consequently, significant delays may result in vaccine introduction and uptake, while post-licensure data are generated to support a definitive policy decision. To address the uncertainties of the evidence-to-recommendation data needs and to mitigate the risk of delays between vaccine recommendation and use, WHO is evaluating the need for and value of a new strategic alignment tool: Evidence Considerations for Vaccine Policy (ECVP). EVCPs aim to fill a critical current gap by providing early (pre-phase 3 study design) information on the anticipated clinical trial and observational data or evidence that could support WHO and/or policy decision making for new vaccines in priority disease areas. The intent of ECVPs is to inform vaccine developers, funders, and other key stakeholders, facilitating stakeholder alignment in their strategic planning for late stage vaccine development. While ECVPs are envisaged as a tool to support dialogue on evidence needs between regulators and policy makers at the national, regional and global level, development of an ECVP will not preclude or supersede the independent WHO's Strategic Advisory Group of Experts on Immunization (SAGE) evidence to recommendation (EtR) process that is required for all vaccines seeking WHO policy recommendation. Tuberculosis (TB) vaccine candidates intended for use in the adolescent and adult target populations comprise a portfolio of priority vaccines in late-stage clinical development. As such, TB vaccines intended for use in this target population provide a 'test case' to further develop the ECVP concept, and develop the first WHO ECVP considerations guidance.


Assuntos
Vacinas contra a Tuberculose , Adolescente , Humanos , Programas de Imunização , Políticas , Vacinação , Organização Mundial da Saúde
6.
Genes Genomics ; 44(1): 53-77, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34410625

RESUMO

BACKGROUND: Pseudomonas aeruginosa is an important opportunistic pathogen especially in nosocomial infections due to its easy adaptation to different environments; this characteristic is due to the great genetic diversity that presents its genome. In addition, it is considered a pathogen of critical priority due to the high antimicrobial resistance. OBJECTIVES: The aim of this study was to characterize the mobile genetic elements present in the chromosome of six Mexican P. aeruginosa strains isolated from adults with pneumonia and children with bacteremia. METHODS: The genomic DNA of six P. aeruginosa strains were isolated and sequenced using PacBio RS-II platform. They were annotated using Prokaryotic Genome Annotation Pipeline and manually curated and analyzed for the presence of mobile genetic elements, antibiotic resistances genes, efflux pumps and virulence factors using several bioinformatics programs and databases. RESULTS: The global analysis of the strains chromosomes showed a novel chromosomal rearrangement in two strains, possibly mediated by subsequent recombination and inversion events. They have a high content of mobile genetic elements: 21 genomic islands, four new islets, four different integrative conjugative elements, 28 different prophages, one CRISPR-Cas arrangements, and one class 1 integron. The acquisition of antimicrobials resistance genes into these elements are in concordance with their phenotype of multi-drug resistance. CONCLUSION: The accessory genome increased the ability of the strains to adapt or survive to the hospital environment, promote genomic plasticity and chromosomal rearrangements, which may affect the expression or functionality of the gene and might influence the clinical outcome, having an impact on the treatment.


Assuntos
Variação Genética , Tamanho do Genoma/genética , Genoma Bacteriano/genética , Ilhas Genômicas/genética , Genômica/métodos , Pseudomonas aeruginosa/genética , Adulto , Bacteriemia/microbiologia , Criança , Biologia Computacional/métodos , Elementos de DNA Transponíveis/genética , Humanos , México , Filogenia , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/patogenicidade , Análise de Sequência de DNA/métodos , Virulência/genética
9.
Microorganisms ; 9(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34835353

RESUMO

In 2011, an outbreak of hemorrhagic colitis and hemolytic uremic syndrome (HUS) was reported in Europe that was related to a hybrid STEAEC of Escherichia coli (E. coli) O104:H4 strain. The current study aimed to analyze strains of E. coli O104 and O9 isolated before 2011. The study included 47 strains isolated from children with and without diarrhea between 1986 and 2009 from different geographic regions, as well as seven reference strains. Serotyping was carried out on 188 anti-O and 53 anti-H sera. PCR was used to identify DEC genes and phylogenetic groups. Resistance profiles to antimicrobials were determined by diffusion in agar, while PFGE was used to analyze genomic similarity. Five serotypes of E. coli O104 and nine of O9 were identified, as well as an antigenic cross-reaction with one anti-E. coli O9 serum. E. coli O104 and O9 presented diarrheagenic E. coli (DEC) genes in different combinations and were located in commensal phylogenetic groups with different antimicrobial resistance. PFGE showed that O104:H4 and O9:(H4, NM) strains from SSI, Bangladesh and México belong to a diverse group located in the same subgroup. E. coli O104 and O9 were classified as commensal strains containing DEC genes. The groups were genetically diverse with pathogenic potential making continued epidemiologic surveillance important.

12.
Vaccine ; 39(31): 4266-4277, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33965254

RESUMO

Diarrhoeal disease attributable to enterotoxigenic Escherichia coli (ETEC) causes substantial morbidity and mortality predominantly in paediatric populations in low- and middle-income countries. In addition to acute illness, there is an increasing appreciation of the long-term consequences of enteric infections, including ETEC, on childhood growth and development. Provision of potable water and sanitation and appropriate clinical care for acute illness are critical to reduce the ETEC burden. However, these interventions are not always practical and may not achieve equitable and sustainable coverage. Vaccination may be the most cost-effective and equitable means of primary prevention; however, additional data are needed to accelerate the investment and guide the decision-making process for ETEC vaccines. First, to understand and quantify the ETEC disease burden, additional data are needed on the association between ETEC infection and physical and cognitive stunting as well as delayed educational attainment. Furthermore, the role of inappropriate or inadequate antibiotic treatment of ETEC-attributable diarrhoea may contribute to the development of antimicrobial resistance (AMR) and needs further elucidation. An ETEC vaccine that mitigates acute diarrhoeal illness and minimizes the longer-term disease manifestations could have significant public health impact and be a cost-effective countermeasure. Herein we review the ETEC vaccine pipeline, led by candidates compatible with the general parameters of the Preferred Product Characteristics (PPC) recently developed by the World Health Organization. Additionally, we have developed an ETEC Vaccine Development Strategy to provide a framework to underpin priority activities for researchers, funders and vaccine manufacturers, with the goal of addressing globally unmet data needs in the areas of research, product development, and policy, as well as commercialization and delivery. The strategy also aims to guide prioritization and co-ordination of the priority activities needed to minimize the timeline to licensure and use of ETEC vaccines, especially in in low- and middle-income countries, where they are most urgently needed.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Vacinas contra Escherichia coli , Criança , Diarreia/epidemiologia , Diarreia/prevenção & controle , Infecções por Escherichia coli/prevenção & controle , Humanos , Organização Mundial da Saúde
13.
Pathogens ; 10(2)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572190

RESUMO

In December 2019, the first cases of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were identified in the city of Wuhan, China. Since then, it has spread worldwide with new mutations being reported. The aim of the present study was to monitor the changes in genetic diversity and track non-synonymous substitutions (dN) that could be implicated in the fitness of SARS-CoV-2 and its spread in different regions between December 2019 and November 2020. We analyzed 2213 complete genomes from six geographical regions worldwide, which were downloaded from GenBank and GISAID databases. Although SARS-CoV-2 presented low genetic diversity, there has been an increase over time, with the presence of several hotspot mutations throughout its genome. We identified seven frequent mutations that resulted in dN substitutions. Two of them, C14408T>P323L and A23403G>D614G, located in the nsp12 and Spike protein, respectively, emerged early in the pandemic and showed a considerable increase in frequency over time. Two other mutations, A1163T>I120F in nsp2 and G22992A>S477N in the Spike protein, emerged recently and have spread in Oceania and Europe. There were associations of P323L, D614G, R203K and G204R substitutions with disease severity. Continuous molecular surveillance of SARS-CoV-2 will be necessary to detect and describe the transmission dynamics of new variants of the virus with clinical relevance. This information is important to improve programs to control the virus.

14.
Vaccine ; 39(1): 85-120, 2021 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31060949

RESUMO

Zika virus, influenza, and Ebola have called attention to the ways in which infectious disease outbreaks can severely - and at times uniquely - affect the health interests of pregnant women and their offspring. These examples also highlight the critical need to proactively consider pregnant women and their offspring in vaccine research and response efforts to combat emerging and re-emerging infectious diseases. Historically, pregnant women and their offspring have been largely excluded from research agendas and investment strategies for vaccines against epidemic threats, which in turn can lead to exclusion from future vaccine campaigns amidst outbreaks. This state of affairs is profoundly unjust to pregnant women and their offspring, and deeply problematic from the standpoint of public health. To ensure that the needs of pregnant women and their offspring are fairly addressed, new approaches to public health preparedness, vaccine research and development, and vaccine delivery are required. This Guidance offers 22 concrete recommendations that provide a roadmap for the ethically responsible, socially just, and respectful inclusion of the interests of pregnant women in the development and deployment of vaccines against emerging pathogens. The Guidance was developed by the Pregnancy Research Ethics for Vaccines, Epidemics, and New Technologies (PREVENT) Working Group - a multidisciplinary, international team of 17 experts specializing in bioethics, maternal immunization, maternal-fetal medicine, obstetrics, pediatrics, philosophy, public health, and vaccine research and policy - in consultation with a variety of external experts and stakeholders.


Assuntos
Epidemias , Doença pelo Vírus Ebola , Vacinas contra Influenza , Vacinas , Infecção por Zika virus , Zika virus , Criança , Feminino , Humanos , Gravidez , Gestantes , Vacinação , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/prevenção & controle
16.
PLoS Negl Trop Dis ; 14(9): e0008613, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32898134

RESUMO

Although enteroaggregative E. coli (EAEC) has been implicated as a common cause of diarrhea in multiple settings, neither its essential genomic nature nor its role as an enteric pathogen are fully understood. The current definition of this pathotype requires demonstration of cellular adherence; a working molecular definition encompasses E. coli which do not harbor the heat-stable or heat-labile toxins of enterotoxigenic E. coli (ETEC) and harbor the genes aaiC, aggR, and/or aatA. In an effort to improve the definition of this pathotype, we report the most definitive characterization of the pan-genome of EAEC to date, applying comparative genomics and functional characterization on a collection of 97 EAEC strains isolated in the course of a multicenter case-control diarrhea study (Global Enteric Multi-Center Study, GEMS). Genomic analysis revealed that the EAEC strains mapped to all phylogenomic groups of E. coli. Circa 70% of strains harbored one of the five described AAF variants; there were no additional AAF variants identified, and strains that lacked an identifiable AAF generally did not have an otherwise complete AggR regulon. An exception was strains that harbored an ETEC colonization factor (CF) CS22, like AAF a member of the chaperone-usher family of adhesins, but not phylogenetically related to the AAF family. Of all genes scored, sepA yielded the strongest association with diarrhea (P = 0.002) followed by the increased serum survival gene, iss (p = 0.026), and the outer membrane protease gene ompT (p = 0.046). Notably, the EAEC genomes harbored several genes characteristically associated with other E. coli pathotypes. Our data suggest that a molecular definition of EAEC could comprise E. coli strains harboring AggR and a complete AAF(I-V) or CS22 gene cluster. Further, it is possible that strains meeting this definition could be both enteric bacteria and urinary/systemic pathogens.


Assuntos
Aderência Bacteriana/genética , Infecções por Escherichia coli/epidemiologia , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/patogenicidade , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Adesinas Bacterianas/genética , Aderência Bacteriana/fisiologia , Estudos de Casos e Controles , Linhagem Celular , Pré-Escolar , Diarreia/microbiologia , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Genoma Bacteriano/genética , Genômica , Humanos , Lactente , Recém-Nascido , Transativadores/genética , Virulência/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
17.
BMC Res Notes ; 13(1): 398, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854762

RESUMO

OBJECTIVE: In December 2019 a novel coronavirus (SARS-CoV-2) that is causing the current COVID-19 pandemic was identified in Wuhan, China. Many questions have been raised about its origin and adaptation to humans. In the present work we performed a genetic analysis of the Spike glycoprotein (S) of SARS-CoV-2 and other related coronaviruses (CoVs) isolated from different hosts in order to trace the evolutionary history of this protein and the adaptation of SARS-CoV-2 to humans. RESULTS: Based on the sequence analysis of the S gene, we suggest that the origin of SARS-CoV-2 is the result of recombination events between bat and pangolin CoVs. The hybrid SARS-CoV-2 ancestor jumped to humans and has been maintained by natural selection. Although the S protein of RaTG13 bat CoV has a high nucleotide identity with the S protein of SARS-CoV-2, the phylogenetic tree and the haplotype network suggest a non-direct parental relationship between these CoVs. Moreover, it is likely that the basic function of the receptor-binding domain (RBD) of S protein was acquired by the SARS-CoV-2 from the MP789 pangolin CoV by recombination and it has been highly conserved.


Assuntos
Betacoronavirus/genética , Coronaviridae/genética , Recombinação Genética , Glicoproteína da Espícula de Coronavírus/genética , Adaptação Biológica/genética , Enzima de Conversão de Angiotensina 2 , Animais , Sítios de Ligação/genética , Quirópteros/virologia , Eutérios/virologia , Evolução Molecular , Furina/metabolismo , Especificidade de Hospedeiro , Humanos , Peptidil Dipeptidase A/metabolismo , Filogenia , SARS-CoV-2 , Seleção Genética , Glicoproteína da Espícula de Coronavírus/metabolismo
18.
Vaccine ; 38(33): 5364-5371, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32563607

RESUMO

The Global Vaccine Action Plan 2011-2020 (GVAP) was developed to realize the ambitions of the Decade of Vaccines - that all individuals and communities enjoy lives free from vaccine-preventable diseases. It included a comprehensive monitoring and evaluation/accountability framework to assess progress towards global targets with recommendations for corrective actions. While many of the GVAP targets are very unlikely to be met by the end of 2020, substantial progress has nevertheless been made, establishing a strong foundation for a successor global immunization strategy, the Immunization Agenda 2030 (IA2030). The Strategic Advisory Group of Experts on immunization has made a series of recommendations to ensure that the lessons learned from GVAP inform the development and implementation of IA2030.


Assuntos
Programas de Imunização , Vacinas , Saúde Global , Humanos , Imunização , Vacinação
19.
PLoS One ; 15(3): e0230220, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32163505

RESUMO

Helicobacter pylori is a Gram-negative bacterium that causes chronic atrophic gastritis and peptic ulcers and it has been associated with the development of gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT). One of the more remarkable characteristics of H. pylori is its ability to survive in the hostile environment of the stomach. H. pylori regulates the expression of specific sets of genes allowing it to survive high acidity levels and nutrient scarcity. In the present study, we determined the expression of virulence associated protein D (VapD) of H. pylori inside adenocarcinoma gastric (AGS) cells and in gastric biopsies. Using qRT-PCR, VapD expression was quantified in intracellular H. pylori-AGS cell cultures at different time points and in gastric mucosa biopsies from patients suffering from chronic atrophic gastritis, follicular gastritis, peptic ulcers, gastritis precancerous intestinal metaplasia and adenocarcinoma. Our results show that vapD of H. pylori presented high transcription levels inside AGS cells, which increased up to two-fold above basal values across all assays over time. Inside AGS cells, H. pylori acquired a coccoid form that is metabolically active in expressing VapD as a protection mechanism, thereby maintaining its permanence in a viable non-cultivable state. VapD of H. pylori was expressed in all gastric biopsies, however, higher expression levels (p = 0.029) were observed in gastric antrum biopsies from patients with follicular gastritis. The highest VapD expression levels were found in both antrum and corpus gastric biopsies from older patients (>57 years old). We observed that VapD in H. pylori is a protein that is only produced in response to interactions with eukaryotic cells. Our results suggest that VapD contributes to the persistence of H. pylori inside the gastric epithelial cells, protecting the microorganism from the intracellular environment, reducing its growth rate, enabling long-term infection and treatment resistance.


Assuntos
Proteínas de Bactérias/genética , Gastrite Atrófica/etiologia , Helicobacter pylori/genética , Glicoproteínas de Membrana/genética , Estômago/microbiologia , Estômago/patologia , Adenocarcinoma/etiologia , Adenocarcinoma/microbiologia , Adenocarcinoma/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Técnicas de Cocultura/métodos , Feminino , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Gastrite Atrófica/microbiologia , Gastrite Atrófica/patologia , Gastroscopia/métodos , Infecções por Helicobacter/complicações , Infecções por Helicobacter/patologia , Humanos , Intestinos/microbiologia , Intestinos/patologia , Masculino , Metaplasia/microbiologia , Metaplasia/patologia , Pessoa de Meia-Idade , Úlcera Péptica/metabolismo , Úlcera Péptica/patologia , Lesões Pré-Cancerosas/etiologia , Lesões Pré-Cancerosas/microbiologia , Lesões Pré-Cancerosas/patologia , Antro Pilórico/microbiologia , Antro Pilórico/patologia , Neoplasias Gástricas/etiologia , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Virulência/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA